If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+25x-510=0
a = 15; b = 25; c = -510;
Δ = b2-4ac
Δ = 252-4·15·(-510)
Δ = 31225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31225}=\sqrt{25*1249}=\sqrt{25}*\sqrt{1249}=5\sqrt{1249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{1249}}{2*15}=\frac{-25-5\sqrt{1249}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{1249}}{2*15}=\frac{-25+5\sqrt{1249}}{30} $
| 9x-5-4x+7=-28 | | 8b+7-2=28+b+47 | | 5(8x+1)=165 | | -293-m)=-3(1-m) | | 100=-3x+10-5x+18 | | 2x+27-3x=11 | | 16a-22=7a+41 | | x-6-1=3+2x-30 | | 3(3-2)=2x+6 | | -8/9=4y | | w+38=14w-1 | | 42x+6+7=84 | | 6x+9+4x+13+x=180 | | b+24+5=2+4b | | 5x+6=-58-10x | | 30x+3=60 | | 1x/4-2=9+1x/8 | | 4+6s-17=8+s+4 | | 10(1x+3)-1(-9x-4)=1x-5+3 | | 13t=t+48 | | 20x-10+4=60 | | T+49=13t | | 9v=5v+16 | | 145=-5(-7p-5)+5p | | 5u-4=7u-44 | | 7-3(x+1)=x+3(x-1) | | h/6=2/24 | | 8u=5u+30 | | (14x-70)=112 | | 8x-2=x+11 | | 1/4x-2=9+1/8x | | -8=4m+2 |